

Poster 41

The Relevance of Scianna in Science Transfusion

Autores: João Colaco, Leonor Costa, Mara Santos, Marcelo Vilas Boas

Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Portugal

U.C.: Imunohemoterapia Clínico-Laboratorial I Professor: Fernando Mendes

Edição 15/2021 27 Maio a 3 Junho

Introduction

- The Scianna blood group was discovered in 1962
- · It consists of seven antigens recognized by The International Society of Blood Transfusion:
 - Sc1 and Sc3 are high frequency
 - · Sc2 and Sc4 (Rd) are low frequency.
 - . Three other antigens are the Sc5 (STAR), Sc6 (SCER) and Sc7 (SCAN).
- · They are expressed by the erythroblast membrane-associated glycoprotein (ERMAP), which is encoded on chromosome 1p34.2.

Chromosome 1 P36.11 Centromere g32.2 KN CROM dion of the ERMAP Gene in

ERMAP

- . The ERMAP protein is expressed in the RBC and its function is not certain even though it is known that it might have a function in the erythropoiesis.
- · ERMAP Is a Member of the Butyrophilin-like Family of the Immunoglobulin Superfamily

Nucleotide variation is located at position 47

- (A) In the wild-type ERMAP expressing Sc1 but lacking Rd antigens, there is a Gly (red) at position 57 and a Pro (green) at position 60; (B) The Sc2 antigen is caused by an Arg
- (blue) at position 57;
- (C)The Rd antigen by an Ala (light blue) at position 60:
- (D)The topology of the ERMAP protein.
- 475
- Nucleotide variation is located at position 103
 - · Nucleotide variation is located at position 81
 - Nucleotide variation is located at position 35

Antigens

- · In most of the cases, Sc antigens are resistant to cin plus papain, α-chymotrypsin sialidase
- · The Scianna blood group has through the combination of its antigens. Their prevalence in two different populations is described on Table 1.

Caucasians	Blacks
99%	100%
1%	0%
Very Rare	0%
Very Rare	Very Rare
Very Rare	0%
Very Rare	0%
Very Rare	0%
	99% 1% Very Rare Very Rare Very Rare Very Rare

Antibodies

- · The main obstacle to detect Sc antibodies is the lack of serologic and RBCs reagents.
- · The most logical approach would be to use recombinant Sc protein during pretransfusion testing to detect antibodies and establish a threshold titer.

Clinical Relevance

Antibodies to the Scianna blood group are not known to cause any severe hemolytic reaction, although in some rare cases it has been reported their clinical relevance:

- The patient's symptoms included fever, rigors, nausea, and abdominal pain.
- The patient's plasma showed a phagocytic index greater than 50% in a monocyte monolayer assay, that correlated very well with clinical relevance.

emolytic disease of the newborn related to anti-Sc2:24

References; Brunker, P. A. R., & Flegel, W. A. (2011). Scianna: the lucky 13th blood group system. Immunohematology, 35(2), 48-50; Crottet, S. L. (2018). Clinical significance of antibodies to antigens in the Scianna, Dombrock, Colton, LandsteinerWeiner, Chido/Rodgers, H, Kx, Cromer, Gerbich, Knops, Indian, and Ok blood group systems. Immunohematology, 34; DeMarco, M., Uhl L Fau - Fields, L., Fields, L Fau - Pacini, D., Pacini D Fau - Grolin, J. B., Gorlin Jb Fau - Kruskall, M. S., & Kruskall, M. S., & Kruskall, M. S., Hemolytic Gisease of the newborn due to the Scianna antibody, anti-Sc2. (0041-1132 (0041-

